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Different instabilities of the boundary layer flows that appear in the cavity between
stationary and rotating discs are investigated using three-dimensional direct numer-
ical simulations. The influence of curvature and confinement is studied using two
geometrical configurations: (i) a cylindrical cavity including the rotation axis and
(ii) an annular cavity radially confined by a shaft and a shroud. The numerical
computations are based on a pseudo-spectral Chebyshev–Fourier method for solving
the incompressible Navier–Stokes equations written in primitive variables. The high
level accuracy of the spectral methods is imperative for the investigation of such
instability structures. The basic flow is steady and of the Batchelor type. At a critical
rotation rate, stationary axisymmetric and/or three-dimensional structures appear in
the Bödewadt and Ekman layers while at higher rotation rates a second transition
to unsteady flow is observed. All features of the transitions are documented. A com-
parison of the wavenumbers, frequencies, and phase velocities of the instabilities with
available theoretical and experimental results shows that both type II (or A) and
type I (or B) instabilities appear, depending on flow and geometric control parame-
ters. Interesting patterns exhibiting the coexistence of circular and spiral waves are
found under certain conditions.

1. Introduction
The study of rotating viscous flow near stationary or rotating discs has significant

relevance to many industrial devices. Early experimental (Faller 1963) and theoretical
(Hide 1968) studies of the fluid motion near a rotating disc were carried out to better
understand flows in the atmosphere and oceans. The stable boundary layer flows
and the first nonlinear regimes were then identified and partially characterized. This
problem is also of considerable fundamental interest (see Hide 1968; Greenspan 1969).
Industrial applications have motivated studies involving more complex geometries,
often with throughflow and heat transfer. Fundamental investigations that are relevant
to the cooling of gas turbines and turbomachinery are reported in a series of papers
by Owen & Rogers (1989, 1995). Typical configurations are cavities between rotating
compressors or turbine discs, between counter-rotating discs, and in a rotor–stator
system with or without throughflow. A characteristic of these flows is the coexistence
of adjacent and coupled flow regions that are radically different in terms of the flow
properties and the thickness scales of the Ekman and Bödewadt boundary layers
compared to those of the geostrophic core region.
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A study of the flow confined between two infinite parallel discs, one at rest and the
other rotating was carried out by Batchelor (1951). His analysis showed that three flow
regions develop at high rotation rate, having the structure of two shear layers near the
walls bounding an inviscid core rotating at constant angular velocity. The flow is now
referred to in the literature as a ‘Batchelor flow’. An alternative similarity solution
that does not involve a core region was proposed by Stewartson (1953) (‘Stewartson
flow’) in the same geometry but at smaller rotation rates. However, Szeto (1978)
later showed that the Batchelor flow similarity solution was the only stable one. In
theoretical and experimental studies of this configuration at high Reynolds number,
Daily & Nece (1960) pointed out the existence of four regimes, two stationary and
two turbulent, corresponding to joined or separated boundary layers, depending on
the rotation rate and geometrical parameters.

In the limit of high rotation rate, the flow between a rotating and a stationary disc
presents two separated boundary layers – of Ekman type on the rotating disc and of
Bödewadt type on the stationary disc – and there now exists an extensive literature
on transition in these boundary layers; see Faller (1991), Greenspan (1969) and Savas
(1987) for references. Two basic types of instability for corotation of the fluid and
the disc have been documented both experimentally and theoretically. Historically
these are referred to as type I (or type B) and type II (or type A) instabilities and
both instability types have been observed when the disc is differentially rotating
slower or faster than the fluid (see, for example, Weidman 1976, figure 7). The type
I instability first reported by Smith (1947) arises from the presence of an inflection
point in the boundary layer velocity profile. It is also referred to as a ‘crossflow’
instability, observed in the flow over a swept wing, where it consists of a series of
standing vortices in the boundary layer (Reed & Saric 1989). The mechanism for type
II instability is related to the combined effects of Coriolis and viscous forces. The
spatial structure of both instabilities consists of travelling vortices in the boundary
layers: their wavelength depends on the boundary layer thickness, and the orientation
of their wave fronts with respect to the geostrophic flow is positive for the type I (B)
instability and negative for the type II (A) instability.

Using a linear stability analysis, Lilly (1966) found that the onset of the type II
instability in the Ekman layer corresponds to a lower critical Reynolds number than
for type I. The critical Reynolds numbers for Ekman layers are close to Reδc,II ' 55
and Reδc,I ' 120 where Reδ = Uδ/ν, U is the reference velocity of the flow outside the
boundary layer and the reference length is the thickness scale of the boundary layer,
δ = (ν/Ω)1/2. The values of the critical Reynolds number for Bödewadt layers over
stationary discs are smaller than for Ekman layers over rotating discs: linear stability
analyses by Faller (1991), Pikhtov & Smirnov (1993) report local critical values of
Reδc,I ≈ Reδc,II ' 20. Linear stability analyses of the flow between a rotating and
a stationary disc, exhibiting several instabilities, have been performed by San’kov &
Smirnov (1991) using similarity solutions as base flow and by Itoh (1991) who studied
the stability of Batchelor type solutions with a separated boundary layer, i.e. for high
values of the rotation rate. The critical values of these authors do not agree and
the mechanisms of the instability are not well elucidated. A good discussion on this
subject may be found in Schouveiler (1998).

We also note the results of the stability analysis of the Ekman–Couette flow with
two Ekman boundary layers by Hoffmann, Busse & Chen (1998). In this configuration
two parallel plates move relative to each other with a constant velocity in a system
that rotates with an angular velocity normal to the plates. This study predicts a
steady roll instability for a low rotation rate and instabilities of type I and type II for
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increasing rotation rates. In a later study on the same Ekman–Couette flow Hoffman
& Busse (2000) found an isolated solution describing a solitary vortex wave which
does not seem to bifurcate from any other known solution. This solution is critical
in a range of moderate rotation rates below the onset of type I instability, but is
unstable with respect to three-dimensional disturbances.

Experimental studies on the stability of the Ekman layer by Faller (1963), Caldwell
& Van Atta (1970) and others (see Crespo del Arco et al. 1996 for an extensive bibli-
ography) have investigated the type I and type II instabilities. The three-dimensional
rolls found in experiments have characteristic parameters (angle, phase velocity and
wavelength) which are in reasonably good agreement with linear stability predictions.
Savas (1987) studied experimentally unsteady uniformly rotating flow over a station-
ary disc and observed both type I and type II instabilities during the nonlinear phase
of spin-down. Savas (1987) noticed the presence of both ring and spiral structures, the
latter having angles between 12◦ and 18◦ for type I. In both the rotor/stator cavity
and in the Ekman layer on a single disc, the experimental results exhibit similar
spatial structures. However, the stationary disc and the confining geometry have an
effect on the critical Reynolds number: Reδc is noticeably increased with respect to the
standard Ekman configuration. Indeed Itoh (1991) made the estimates ReδcII = 85.3
and ReδcI = 281 for his experiment. Also, the experimental work of Sirivat (1991)
studied the effect of geometry and rotation rate, concluding that the three modes of
instability originate from different basic velocity fields.

The convective nature of spirals in the Ekman layer has been experimentally
demonstrated (Lingwood 1996) by studying the response of the flow over a single
rotating disc (von Kàrmàn boundary layer) to a local perturbation. In addition, the
convective/absolute nature of the transitions in the boundary layer flow over a rotating
disc has been demonstrated in both theoretical (Lingwood 1995) and experimental
studies (Lingwood 1996). For the rotating flow over an infinite stationary disc,
Lingwood (1997) also found theoretically the existence of this convective/absolute
transition. The recent experimental results of Gauthier, Gondret & Rabaud (1999) of
the instability of the flow between a stationary and a rotating disc have also revealed
that the flow exhibits a convective/absolute transition in a rotor–stator cavity.

The evolution of the aforementioned types of flow and higher bifurcations have
received relatively less attention in the literature. The experimental study of Schou-
veiler (1998), Schouveiler et al. (1999) presents the evolution and further transitions
of the flow regimes for a wide range of values of the geometrical and control pa-
rameters. They report a variety of instability patterns depending on the aspect ratio
of the cavity. For a basic state of Batchelor flow type, the critical instability has the
form of annular rolls and spiral waves develop with positive angles for increasing
rotation rate. When the basic state is a viscous flow – that is when the two boundary
layers merge at high rotation rate – the critical instability consists of spiral rolls with
negative angles, and also structures without spatial or temporal periodicity (such as
solitary waves or spots) were observed far from the axis during the transition to
turbulence (see also San’kov & Smirnov 1985). The stability analysis in the Ekman–
Couette configuration of Hoffmann et al. (1998) also predicts secondary and tertiary
transitions of the three types of flow (steady, type I and type II primary instabilities).
Hoffman & Busse (2000) report that the solitary wave solution may correspond to
the rollers observed in experiments on rotating discs but seems to have different
nature and form from the solitary waves found by Cherhabili & Ehrenstein (1995)
in the problem of plane Couette flow. The behaviour of non-modal perturbations in
an Ekman layer flow has been investigated by Foster (1997), and the results explain
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certain patterns noted in the atmospheric boundary layer by predicting other possible
scenarios in the transition to turbulence. A wide range of nonlinear phenomena and
instabilities in rotating flows has also been reported by Hopfinger & Linden (1990).

Recently, a number of direct numerical simulations of instabilities of boundary
layers in rotating flow systems have been carried out. The evolution of type II waves
in an Ekman layer was studied using a two-dimensional numerical method by Marlatt
& Biringen (1995), but the two-dimensional computational results did not include the
important effect of curvature nonlinear terms which give the possibility of obtain-
ing circular and spiral roll waves. The circular waves observed in experiments have
been obtained numerically in a rotor–stator cavity by solving the time-dependent ax-
isymmetric Navier–Stokes and continuity equations by Crespo del Arco et al. (1996),
Lopez & Weidman (1996), and Cousin-Rittemard (1996). However, these results were
not fully satisfactory because they only considered axisymmetric models while, in gen-
eral, the phenomena are three-dimensional. In recent works, Hugues et al. (1998) and
Serre et al. (2001) obtained the first numerical simulation of spiral waves in a rotating
cavity with a radial outflow by solving the three-dimensional governing equations.

In the present investigation we study the spatial structure and time dependence of
flows which develop between a stationary and a rotating disc. Our direct numerical
simulations exhibit some effects of curvature and geometrical confinement as previ-
ously noted in Serre, Crespo del Arco & Bontoux (1999). Two geometries are chosen
in order to minimize the number of degrees of freedom in the numerical code, thereby
reducing the computational time. The effect of weak curvature far from the rotation
axis is studied with an annular geometrical configuration: the shaft–shroud model.
This configuration reduces the radial domain and hence the required mesh resolution.
The two geometric parameters used to define a cavity are the aspect ratio L = ∆R/2h
and the curvature parameter Rm = (R1+R0)/∆R. A moderate cavity aspect ratio L = 5
is considered with curvature parameters Rm = 4 and 5. To investigate large curvature
effects, a cylindrical cavity involving the axis is also considered and here aspect ratios
L = 2 and 5 are relevant to a wide range of experimental configurations (Sirivat
1991; Schouveiler et al. 1999; Savas 1987; Gauthier et al. 1999). A pseudospectral
Chebyshev–Fourier method associated with a multi-step time scheme is used. The
spectral methods are particularly efficient in terms of accuracy with respect to the
number of polynomials. Moreover, the use of the Chebyshev collocation approxi-
mation is readily adapted to concentrating grid points in the thin layers bordering
the domain. The methods also guarantee a small phase error for the time-dependent
simulations (Gottlieb & Orszag 1977; Canuto et al. 1988). The results were carried out
for various rotation rates and geometrical configurations and the solutions, axisym-
metric and three-dimensional, exhibit instabilities in the form of circular rolls or spiral
vortices. These structures show great similarities with those described in the literature.

The presentation will be given as follows. The geometrical models are described in
§ 2 and the mathematical model and numerical solution technique are delineated in
§ 3. The structure of the basic stable flow is given in § 4. The results presented in § 5
are analysed in detail and compared with other investigations, both experimental and
theoretical. A discussion of results is given in § 6 and concluding remarks are made
in § 7.

2. Geometrical model
The geometrical models correspond to two discs enclosing either a cylindrical or

an annular domain of radial extent ∆R = R1 − R0, where R0 and R1 are the internal
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Figure 1. Schematic diagram of the rotating cavities. (a) Annular cavity. (b) Cylindrical cavity.

and external radii. The cavity that includes the axis, R0 = 0, will be denoted the
‘cylindrical’ cavity while the case R0 6= 0 will be referred to as the ‘annular’ cavity.
This last configuration is used to investigate curvature effects. These geometrical
domains are bounded by one or two cylinders of height 2h as shown in figures 1(a)
and 1(b); the origin of the z-axis is located at mid-height between the discs. The
internal and external cylinders are denoted the shaft and the shroud, respectively.
One disc of the cavity is stationary (stator) and the other (rotor) rotates at uniform
angular velocity Ω = Ωez, ez being the unit vector on the axis. These configurations
are basic cavity elements of a turbine engine.

3. Mathematical model and numerical method
3.1. Physical parameters

The flow is controlled by three major physical parameters: the relevant flow parameter
is the Reynolds number Re and the two geometrical ones (which are also extremely
important) are the aspect ratio of the cavity and the curvature parameter – defined
in the following subsection.

The closed geometry is characterized by three independent length scales, R0, R1, h,
each of which may be used in the definition of Re. In the literature the Reynolds
number is based either on the external radius of the cavity, ReR = ΩR2

1/ν (Owen
& Rogers 1989; Schouveiler et al. 1999; Lopez & Weidman 1996), or on the height
of the cavity, Re = Ω(2h)2/ν (Cousin-Rittemard 1996; Gauthier et al. 1999; Sirivat
1991). The latter is characteristic of the ratio between the thickness scale of the
r-independent Ekman layer δ = (ν/Ω)1/2 (which also provides a good thickness scale
of the Bödewadt layer) and 2h, the height of the cavity. Then large values of Re
are typical of the separated layers regime (Batchelor solution) while small Re are
characteristic of the merged boundary layer regime (Greenspan 1972).

For sufficiently large values of Re, the boundary layers can be studied independently
as a first approach as the flow over a single disc. As shown by analyses of the single
infinite disc problem, the relevant Reynolds number is neither of the above, but rather
the local Reynolds number Reδ = Ωδr/ν; note that this is the ratio between the local
distance to the axis r and δ defined above. The Reynolds number ReR then gives an
upper bound to the square of the local Reynolds number Reδ .

In the following, we will use Re as the general physical parameter but we will
also incorporate Reδ in the discussion of stability thresholds and characteristic wave
parameters.



70 E. Serre, E. Crespo del Arco and P. Bontoux

3.2. Mathematical model

The incompressible fluid motion is governed by the three-dimensional Navier–Stokes
equations which are written below in primitive variables. The two geometrical param-
eters that appear are the curvature parameter Rm = (R1 + R0)/∆R and the aspect ratio
L = ∆R/2h. For the ‘cylindrical’ cavity the only geometrical parameter is L = R1/2h,
since Rm = 1. The scales for the dimensionless variables of space, time and veloc-
ity are [h, Ω−1, ΩR1] respectively. The dimensionless axial and radial coordinates are
z = z∗/h, z ∈ [−1, 1] and r̄ = r∗/h, r̄ ∈ [L(Rm−1), L(Rm + 1)], respectively. The radius
r̄ has been normalized on [−1, 1], a requisite for the use of Chebyshev polynomials:
the normalized variable is r with r = (r̄/L− Rm).

Along the cylindrical coordinate directions (r, θ, z) the velocity components are
(u, v, w) respectively, and p is the pressure. Using the above space and time scales, the
dimensionless continuity and momentum equations may be written in an absolute
frame of reference:

1

L

∂u

∂r
+

u

L(Rm + r)
+

1

L(Rm + r)

∂v
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+
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with the advection terms written as
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where the cylindrical Laplacian operator is defined by

∆ =
1

L2

∂2

∂r2
+

1

L2(Rm + r)

∂

∂r
+

1

L2(Rm + r)2

∂2

∂θ2
+

∂2

∂z2
.

No-slip boundary conditions apply at each impermeable wall. Thus u = w = 0 on
all rigid walls. For the azimuthal velocity, the boundary conditions are v = 0 on the
stator (z = −1) and v = (Rm+r)/(Rm+1) on the rotating disc (z = 1). The junction of
the stationary cylinder with the rotor involves a singularity of the azimuthal velocity,
as previously noted by Maubert et al. (1993). This singular condition expresses a
physical situation where there is a thin gap between the edge of the rotating disc and
the stationary sidewall, and we have retained this condition in the ‘cylindrical’ model
since it is relevant to experimental devices. In the ‘annular’ model, the boundary
conditions have been regularized with a virtual wall that produces a linear azimuthal
velocity profile, as proposed by Cousin-Rittemard (1996) and Cousin-Rittemard,
Daube & Le Quéré (1998). This linear profile is interesting from a mathematical
point of view because it reduces sources of errors that could affect the numerical
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solution. The two-dimensional results of these authors also provided benchmark
solutions to our computations as they were the first to provide an explanation of
the phenomenon of the direct transition from a steady to a time-dependent ‘chaotic’
boundary layer that was also observed in slender cavities by Maubert et al. (1993):
the origin was attributed to curvature and confinement effects. For the range of
parameters (L, Re) considered in this work, Serre (2000) has shown that similar
patterns are nevertheless obtained with both the actual (discontinuous) and the
academic (regularized) boundary conditions; the only slight differences (at the same
Reynolds number) concern the near-shroud region but do not affect the layer of the
stationary disc. At the shaft (r = −1) and at the shroud (r = 1) a continuous variation
is considered in the form v = (1 + z)(Rm + r)/2(Rm + 1), r = ±1.

The initial condition corresponds to no motion in the meridional plane and to a
linear shear profile for the azimuthal velocity:

u = w = 0, v =
(Rm + r)

2(Rm + 1)
(1 + z) for − 1 6 r, z 6 1.

For the cylindrical cavity there is no physical boundary condition at the axis R0 = 0.
The dimensionless mathematical model is then slightly different and incorporates
transformed dependent variables, as a requirement for numerical approximation. A
natural zero condition is imposed on the axis by considering the new dependent
variables Ψ̃ = r̄Ψ with Ψ = (u, v, w, p) as proposed by Serre & Pulicani (2001).

3.3. Numerical method

The numerical solution is based on a pseudospectral collocation Chebyshev–Fourier
Galerkin method (see Canuto et al. 1988). The choice takes into account the orthog-
onality properties of Chebyshev polynomials and, in particular, provides exponential
convergence – referred to as spectral accuracy (Gottlieb & Orszag 1977). Moreover
the use of the Gauss–Lobatto collocation points, corresponding to the extrema of the
Chebyshev polynomials of high degree, N and M in the radial and axial directions
respectively, directly ensures high accuracy of the solution inside the very narrow wall
layers.

The differential equations are exactly satisfied at the Gauss–Lobatto collocation
points, (ri, zj) ∈ [−1, 1]× [−1, 1]:

ri = cos

(
iπ

N

)
, zj = cos

(
jπ

M

)
(i = 0, . . . , N; j = 0, . . . ,M).

The approximation of flow variables Ψ = (u, v, w, p) and their derivatives is derived
from the following truncated series:

ΨNMK(r, z, θ, t) =

K/2−1∑
p=K/2

N∑
n=0

M∑
m=0

Ψ̂nmp(t)Tn(r)Tm(z) eipθ for

{−1 6 r, z 6 1
0 6 θ 6 2π

}
,

∂q ΨNMK

∂rq
(ri, zj , θk, t) =

N∑
η=0

dr
(q)
iη ΨNMK(rη, zj , θk, t),

∂q ΨNMK

∂zq
(ri, zj , θk, t) =

M∑
ξ=0

dz
(q)
jξ ΨNMK(ri, zξ, θk, t),

where dr(q)
ij and dz

(q)
ij correspond to the coefficients of the matrix of first and second
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derivatives (q = 1, 2) and where θk = 2πk/K , k = 0, . . . , K − 1, are azimuthal points.
An expansion of these coefficients based on the sinus function (Rothman 1991) is
used to reduce the round-off error. Tn and Tm are Chebyshev polynomials and Ψ̂nmp

are the spectral coefficients defined by

Ψ̂nmp(t) =
1

K

1

c′n

1

c′m

K−1∑
k=0

N∑
i=0

M∑
j=0

1

cic
′
j

Ψ (ri, zj , θk, t)Tn(ri)Tm(zj) e−ipθk

with c0 = cN = c′0 = c′M = 2 and cn = c′m = 1 for n = 1, N − 1 and m = 1, M − 1.
The unknowns are required to be real Ψ (rn, zm, θk) in physical space. The physical
conditions are explicitly taken into account at the boundaries.

The time scheme is semi-implicit and second-order accurate. It corresponds to a
combination of the second-order backward differentiation formula for the viscous
diffusion term and the Adams–Bashforth scheme for the nonlinear terms; see Vanel,
Peyret & Bontoux (1986). The velocity–pressure coupling is performed with a projec-
tion algorithm developed by Gresho & Sani (1987) for finite elements and applied
by Raspo (1996) for three-dimensional spectral calculations. This algorithm has been
modified by Hugues & Randriamampianina (1998) with an extension at each time
step of a preliminary pressure, previously estimated at the initial step only. This
procedure allows a possible temporal evolution of the normal pressure gradient at
the boundaries. The modified algorithm is shown to reduce the slip velocity on the
boundaries by one order of magnitude (compared to that of the temporal scheme)
and it improves the incompressibility condition without the need of a shifted grid for
the velocity and the pressure. At each time step the solution of the Navier–Stokes
equations reduces to a solution of Helmholtz and Poisson type equations in Fourier
space. A direct solver for these equations is used and based on a complete matrix di-
agonalization technique proposed by Haldenwang et al. (1984); for the annular cavity
the matrices of radial and axial operators are diagonalizable with real eigenvalues
and in the case of the cylindrical cavity the technique has been extended to complex
eigenvalues. The numerical approximation method in this latter case was modified
with the dependent variable transformation introduced above (§ 3.2) in order to take
into account the central axis. Details of the technique are developed in Serre &
Pulicani (2001).

3.4. Spatial and temporal resolution

The numerical strategy consists of increasing step by step the rotation rate from the
base steady state to more complex flow regimes.

For the annular cavity, the accuracy of the solution was assessed by considering
different grids and according to the value of the Reynolds number Re and of the
curvature parameter Rm: the accuracy and the mesh dependence are reported in table 1
where some physical parameters of the solutions are compared. Some characteristic
features of the three-dimensional flow structures are reported for Re = 330 and
Re = 400; these are the instability frequency σ, the number of spiral arms, the
number of rolls across the radial extent ∆R of the cavity, the deflection of the spiral
angle ε from the direction of the geostrophic core flow, the normalized disturbance
wavelength λ/δ, and the maximum of the axial velocity fluctuation. The physical
meaning of the variables is discussed in § 5. It may be observed from table 1 that
the solutions are almost identical with different meshes. The space and time scales
of the instability differ by less than 0.1% and the major difference is observed in the
magnitude of the perturbation w̃ (about 10%) that indicates the deflection from a
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Number of spiral Number of rolls in ∆R ε (deg.) λ/δ |w̃max|
Mesh σ arms over 2π stator/rotor stator/rotor stator/rotor stator/rotor

(a) 48× 48× 48 21.385 22 8 [11, 23] [14.9, 20.45] 1.85× 10−2

16 [−15.3,−6.9] [9.4, 13.8] 5× 10−3

64× 64× 48 21.407 22 8 [11, 23] [14.9, 20.43] 2.0× 10−2

16 [−15.3,−6.9] [9.4, 13.8] 5.5× 10−3

152× 152× 48 21.403 22 8 [11, 23] [14.9, 20.40] 2.1× 10−2

16 [−15.3,−6.9] [9.4, 13.8] 5.7× 10−3

(b) 64× 64× 48 16.790 18 10 [17, 30] [13, 31.8] 7.0× 10−3

14 [−20,−7.5] [10, 15.2] 3.25× 10−3

64× 64× 64 16.801 18 10 [17, 30] [13, 31.8] 7.1× 10−3

14 [−20,−7.5] [10, 15.2] 3.35× 10−3

64× 64× 128 16.801 18 10 [17, 30] [13, 31.8] 7.05× 10−3

14 [−20,−7.5] [10, 15.2] 3.33× 10−3

Table 1. Mesh dependence of the solution: (a) in both (r, z) directions for a three-dimensional solution at Re = 330 in the annular cavity (L = 5,
Rm = 5); (b) in the azimuthal direction for a three-dimensional solution at Re = 400 in the annular cavity (L = 5, Rm = 4). The upper and lower
values of the parameters on ∆R are indicated in brackets.
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Figure 2. Basic flows of Batchelor type; velocity field in the plane (r, z, π/4): (a) annular cavity
(Rm = 5, L = 5) at Re = 200, (b) cylindrical cavity (L = 2) at Re = 1400. Black arrows outside the
cavity (a) indicate the locations where the flow properties are stored for temporal analyses.

parallel flow. These tests and a former axisymmetric study of a rotating annular cavity
(Crespo del Arco et al. 1996) indicate that spatial resolutions of 48× 48 and 64× 64
in (r, z), for Re = 330, Rm = 5 and for Re = 400, Rm = 4, respectively, constitute a
good compromise between required accuracy and computational cost. The time steps
incorporated are δt = 4× 10−3 for 48× 48× 48, δt = 2× 10−3 for 64× 64× 64 and
δt = 10−3 for 152× 152× 64.

For the cylindrical cavity the grid refinement had to be increased due to nonlinear
effects close to the axis: 64 × 64 × 48, 123 × 123 × 48 for Re = 4000, L = 2 and
123 × 33 × 48 for Re = 1600 and L = 5. The time step incorporated is δt = 10−3.
Numerical details concerning the accuracy and solution dependence on mesh size are
given in Serre & Pulicani (2001).

For the time-dependent solutions, the computing time is determined by the largest
characteristic time in rotating flows, i.e. the viscous diffusion time tν = (2h)2/ν
(Greenspan 1969); the dimensionless viscous time is equal to Re and the largest value
is equal to 4000. Beyond one diffusion time, viscous effects have permeated the entire
cavity and the small residual inertial oscillations are strongly damped.

Steady flow solutions are expected when the convergence rate becomes smaller
than the relevant criterion |Un+1 −Un|/δt 6 10−5 where U is the velocity vector, and
the superscripts n+ 1 and n correspond to the time stages (n+ 1)δt and nδt.
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Figure 3. Axial profiles of the velocity in the annular cavity (Rm = 5, L = 5) at Re = 200: (a) radial
component u at mid-radial location r = 0, (b) normalized azimuthal velocity at different radial
locations. (c) Normalized thicknesses of both Ekman and Bödewadt layers, δE/δ and δB/δ with

δ = (ν/Ω)1/2, measured at Re = 1400 in the cylindrical cavity (L = 5) and linear fit of the data.

4. Basic flow
The base flow solution is steady, axisymmetric, and composed of boundary layers

on each disc and of a central core flow in near solid body rotation. These basic flow
solutions have been displayed for the two configurations: in the annular cavity at
Rm = 5, L = 5, Re = 200 (figure 2a) and in the cylindrical cavity Rm = 1, L = 2
for Re = 1400 (figure 2b). The z-profiles of radial and azimuthal velocity in the
annular cavity Rm = 5 are given in figures 3(a) and 3(b) (at different radial locations),
respectively. It is clear that the basic flow consists of two disjoint boundary layers
above each disc which behave rather independently of each other, with fluid pumped
radially outward along the rotating disc and radially inward over the stationary disc.
These boundary layers are separated by the rigidly rotating core where the azimuthal
component of velocity is independent of z (see Greenspan 1972). By analogy with the
single disc problem, the boundary layer close to the rotating disc is called the Ekman
layer (although Ekman layer solutions are linear, one retains this terminology in the
nonlinear case) whereas the boundary layer close to the stationary disc is called the
Bödewadt layer.

For infinite discs at sufficiently large rotation rates, similarity studies give a solid-
body angular velocity v∗(z = 0)/(Ωr∗) = β where β is a constant, 0.313, as theoretically
determined by Itoh (1991) for Re = 1000. This parameter is a Rossby number that
measures the ratio between convective and Coriolis effects and which links the
rotation speed of the disc (that we actually control) and the thickness scale of the
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Bödewadt layer, δB = (ν/Ωf)
1/2, Ωfr

∗ = v∗(z = 0). Unlike the similarity studies, we
observed a radial variation of the parameter β and its value at the centre of the cavity
is 0.53 (figure 3b for r̄ = 25), which is about 70% larger than the value predicted
by the similarity studies. A comparison with available values of β in confined and
non-confined geometries can be found in Randriamampianina et al. (1997) and an
analytical expression for β as a function of radius is proposed in Owen & Rogers
(1989) and Rott & Lewellen (1966). The radial evolution of β is emphasized in
figure 3(b) which displays the normalized velocity profile v∗/Ωr∗ at Re = 200 for
different radial locations. The core fluid rotation rate increases from the shaft to
the shroud as noted in former studies. These profiles emphasize also the increase of
the core width characterized by v∗ = βΩr∗. From the velocity field (figure 2a), we
can see that this expansion of the core with the radius corresponds to a decrease of
the Bödewadt layer thickness. Moreover, we show (figure 3c) the normalized (by δ)
thicknesses of both Ekman and Bödewadt layers, in the case of the cylindrical cavity
L = 5: for a given rotation rate, the Ekman layer remains constant in r̄ whereas the
Bödewadt layer thickness monotonically decreases from the shaft to the shroud, as
experimentally noted by Gauthier et al. (1999). Our results closely fit the trend shown
by these authors and nicely complete their measurements in the near-axis region
where they are missing.

A comparison between the numerical results for finite configurations and the self-
similar theoretical results for infinite discs shows that radial confinement can play a
significant role; see Brady & Durlofsky (1986) for a discussion of finite disc effects.
Nevertheless, the theoretical studies still provide qualitatively correct descriptions of
our present solutions. Such behaviour of the base flow in confined geometries means
that the radial flow is non-parallel and thus the description of the instability and
the comparison with the literature require local scaling parameters. Although these
numerical solutions do not completely satisfy self-similarity, they are still usually
referred to as of Batchelor type.

5. Results
The investigation has been carried out for the two types of cavities shown in figure 1.

For the annular cavity, the aspect ratio L = 5 and the curvature parameters Rm = 4
and Rm = 5 correspond to r̄ ∈ [15; 25] and r̄ ∈ [20; 30], respectively. We note that
the Rm = 5 cavity is relevant to linear Ekman layers as shown in a preceding paper,
Crespo del Arco et al. (1996). For the cylindrical cavity, the curvature parameter is
Rm = 1 and the chosen aspect ratios are L = 2 for r̄ ∈ [0; 4] and L = 5 for r̄ ∈ [0; 10].
The largest aspect ratio, L = 5, is a practical compromise between actual rotor/stator
devices (that are of larger aspect ratio) and the computational cost of the numerical
simulation. This cylindrical configuration is often used in fundamental experimental
investigations. A wide range of behaviour has been reported for this type of cavity:
the flows are stable in the near-axis region at small local Reynolds number Reδ and
unstable for Reδ > Reδc. Annular and spiral structures arise at intermediate and great
distances from the axis.

The velocity fluctuations, denoted by a tilde superscript in what follows, display the
spatial structure of the instabilities. The time-dependent fluctuations are computed
at given instants with respect to the average flow solution. When instability arises,
the flow deviates from the parallel flow and then the perturbations are measured
primarily by the magnitude of the axial component of velocity which varies about a
zero mean.
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Figure 4. Sketch of various annular and cylindrical cavities in terms of radial extent r̄: numerical
model and actual devices from relevant experiments.

The dynamic behaviour of the dependent variables (u, v, w, p) is analysed at the
nine significant (r, z, θ) points shown by the bold arrows in figure 2(a): three points
(−0.5, 0.95, π/4), (0, 0.95, π/4), (0.5, 0.95, π/4) close to the rotating disc, three points
(−0.5,−0.95, π/4), (0,−0.95, π/4), (0.5,−0.95, π/4) close to the stationary disc, and
three points (−0.5, 0, π/4), (0, 0, π/4), (0.5, 0, π/4) in the core.

The first goal of this section is to correlate numerical simulations and related ex-
perimental results reported by Savas (1987), Sirivat (1991), Lopez & Weidman (1996),
Schouveiler et al. (1999), and Gauthier et al. (1999). Figure 4 shows the annular and
cylindrical cavities in terms of radius variation together with the relevant experiments
that are discussed in the following section. The instabilities appear as waves of circular
or spiral form. They exhibit characteristics that are referred to as type I and type II
instabilities of the Ekman and Bödewadt layers. The results have been obtained over
computing times of the order of the viscous time and are summarized in table 2 for
the annular cavity and in table 3 for the cylindrical cavity. Some relevant experimental
and numerical results as well as results of the stability analysis are reported in tables 4
and 5 for the Bödewadt and the Ekman layers, respectively.

5.1. Axisymmetric instability of the basic flow

Two kinds of axisymmetric instabilities arise from the steady base flow (§ 4). One
of them is stationary, presenting circular vortices, and the other is oscillatory and is
characterized by travelling vortices in the Bödewadt and Ekman layers. The radial
wavelength is defined as λr = ∆r∗/nr , where ∆r∗ is the radial length occupied by the
nr rolls. The wavelength is measured in terms of the Ekman layer length scale δ, as
is usual in the literature.
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ReR, Re, Reδ σ λr/δ V ∗Φ/Ωr∗ σ λ/δ V ∗Φ/Ωr∗ ε (deg.) n

(a) 35000, 224, [112, 187] S — — — — — — —

[13, 31.8] [0.27, 0.40] [17, 30] 18
45000, 288, [127, 212] S — — 16.8

[15.2, 10] [0.36, 0.13] [−20,−7.5] 18

[11, 17.6] 0.03 [17.4, 20.5] [0.30, 0.21] [15.6, 23] and 0 18
62500, 400, [150, 250] 4.76 16.2; 8

30 [0.08, 0.12] [17.9, 11.4] [0.30, 0.12] [−20,−7.5] 18

(b) 35000, 156, [124, 187] S — — — — — — —

[16.7, 11.6] [0.30, 0.14] [16, 24.1] 18
45000, 200, [141, 212] S — — 16.3

[13.6, 25] [0.25, 0.30] [−19.7,−9] 18

[14.9, 20.4] [0.28, 0.25] [11, 23] 22
75000, 330, [183, 274] O [6, 11] 0 21.4

[13.8, 9.4] [0.26, 0.12] [−15.3,−6.9] 22

Table 2. Characteristics of the numerical solutions in the annular cavities for different Reynolds numbers: (a) annular cavity (L = 5, Rm = 4), (b)
annular cavity (L = 5, Rm = 5). The upper and lower values of the parameters along the radial direction are indicated in brackets. S denotes steady
flow while σ = 0 denotes the stationary unstable solution.
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9

Rings stator/rotor Spiral arms stator/rotor

ReR , Re, Reδ σ λr/δ V ∗Φ/Ωr∗ σ λ/δ V ∗Φ/Ωr∗ ε (deg.) n

(a) 10000, 2500, [0, 100] S — — — — — — —

16000, 4000, [0, 127] 0.94 [10, 21] [0.08, 0.02] 0.94; 2.82 [28.5, 16.1] [0.68, 0.06] 0 and [25.5, 7] 6

(b) 20000, 800, [0, 141] S — — — — — — —

30000, 1200, [0, 173] S — — 1 [45, 22.1] [0.27, 0.02] [28, 7] 6

40000, 1600, [0, 200] 4 [8, 25] [0.13, 0.21]

Table 3. Characteristics of the solutions in the cylindrical cavities for different Reynolds number: (a) cylindrical cavity (L = 2); (b) cylindrical cavity
(L = 5). The upper and lower values of the parameters on ∆R are indicated in brackets.
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H
R Re Re ε

References L (mm) ReR Reδc λ/δ σ V ∗φ/Ωr∗ type ReR Reδc λ/δ σ (deg.) type

Measurements
Gauthier et al. (1999) 20.9 6.7 110 — — 4 — II 140 — — — ε > 0 I

140 48049 61153

Sirivat (1991) 21 12.07 88.6 ≈ 49 9.4 0 0.12 II 653 400 38 — — I
254 39268 287973

71.4 3 — — — — — — 11.36 140 6.74 — — I
214 57912

Schouveiler et al. (1999) 8.75 16 225 — — [3, 1] [0.036, 0.05] II 273 — — 2.1 25 I
140 17200 20900

Savas (1987) 2 214.8 38528 35 [11, 25] 5 — II 154124 — 25 2.5 [12, 18] I
107.4 9632 38531

Theory — 15.1 16.6 — −33.2 II
Faller (1991) — — — — — — — — — [15.1, 25] — — — I

Pikhtov & Smirnov (1993) — — — 21 — — — II — 18.9 — — −22.4 II

2D simulations
Lopez & Weidman (1996) — — — 27.5 — — [0.083, 0.13] II

Cousin-Rittemard (1996) [3, 10] — — [164, 316] — — — II

Table 4. Summary of results on Bödewadt layer instabilities. The upper and lower values of the parameters on ∆R are indicated in brackets.
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H (mm)
References L R (mm) Reδc λ/δ σ ε (deg.) V ∗φ/Ωr∗ Type

Measurements
Caldwell & Van Atta (1970) 18 125 56.7 — [7.5, 11] — — II

2250

Faller (1963) and — — Reδc 6 70 [22, 33] — [−20, 5] — II
Faller & Kaylor (1966) — — 125 [9.6, 12.7] — [10, 16.3] — I

Weidman (1976) 0.26 291.8 60 20.4 — [−7,−1] — II
7.8

Theory
Lilly (1966) — — 55 21 12 −20 — II

— — 110 11.9 5 7.5 — I

Faller & Kaylor (1966) — — 55 24 — −15 — II
— — 118 11 — [10, 12] — I

Faller (1991) — — 54.3 20.1 — −23.1 — II
— — 113.1 11.5 — 6.9 — I

2D numerical simulations
Crespo del Arco et al. (1996) 5 — [74, 112] [26, 29] 6 0 0.28 II

Table 5. Summary of results on Ekman layer instabilities. The upper and lower values of the parameters on ∆R are indicated in brackets.
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Figure 5. Stationary axisymmetric instability at Re = 330 in the annular cavity (Rm = 5, L = 5).
(a) Time history of the solution close to the stationary disc w (0,−0.95, π/4). (b) Three-dimensional
display in a Cartesian frame of the axial velocity (w = 3× 10−3) in the steady solution at t = 450.

5.1.1. Stationary instability

The basic Batchelor flow solution found at Re = 200 was described in § 4. For Re =
330, we found that the base flow is unstable to circular steady waves which appear on
the stator wall. The stationary instability in the annular cavity (Rm = 5) is presented
in figure 5(b). The time history is displayed in figure 5(a). The solution ultimately sta-
bilizes over about one viscous time scale (tν = 330 as may be seen in figure 5a) to yield
three pairs of steady circular rolls near the stationary disc with variable wavelength
6 6 λr/δ 6 11, as seen in figure 5(b). The stationary axisymmetric solution has features
very similar to the experiments of Sirivat (1991) conducted for a cylindrical cavity of
L = 10.52 at the smaller Reynolds number Re = 88.6. These experiments exhibited sta-
tionary circular rolls with a wavelength 9.4 6 λr/δ 6 14 that are related to the type II
instability of the Bödewadt layer and appear quite similar to the present simulation.
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Figure 6. Time-dependent axisymmetric instability at Re = 400 in the annular cavity (Rm = 4,
L = 5). (a) Iso-lines of the fluctuations of the axial velocity (w̃ = 3× 10−3) in the plane (r, z, π/4).
(b) Iso-surface of the fluctuations of the axial velocity (w̃ = 3× 10−3) close to the stationary disc in
the plane (r,−0.95, θ) for 0 6 θ 6 π. (c) Iso-surface of the fluctuations corresponding to the axial
velocity (w̃ = 2× 10−4) close to the rotating disc in the plane (r, 0.95, θ) for 0 6 θ 6 π.
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Redc=27

Figure 7. Time-dependent axisymmetric instability of the Bödewadt layer at Re = 1600 in the
cylindrical cavity (L = 5) and in the plane (r, z, π/4). Instantaneous iso-lines of the fluctuation of
the axial velocity (w̃ = 4× 10−3). Critical local Reynolds number Reδc = 27.

5.1.2. Time-dependent instability

When the rotation rate was increased, the instability became time dependent in
both the annular (L = 5, Rm = 4) and the cylindrical (L = 2) cavities.

In the annular cavity, axisymmetric vortices are visible in the boundary layers of
both the stationary and the rotating discs; see figure 6(a). In this figure (as in the
following figure 9b) the iso-lines have been concentrated in the region of the lower
value of the variable. This kind of display is chosen because it emphasizes the weaker
disturbances close to the rotating disc but it exhibits the layer magnitudes with a
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noticeable white surface inside the stronger disturbances close to the stator. The
oscillatory solution (σ = 4.7) is reached after a transient of the order of the viscous
time, namely t = 300 (' 2tν/3) for Re = 400. A lower frequency modulation σ = 0.3
is observed but vanishes after t = 200.

Inside the Ekman layer, three pairs of extended circular rolls with 19.5 6 λr/δ 6 30
propagate along the direction of the base flow and exhibit annular structures; see
figure 6(c).

Inside the Bödewadt layer, about five pairs of counter-rotating rolls propagate
radially inward (following the direction of the base flow), in the form of concentric
rings; see figure 6(b). Outside the zones neighbouring the shaft and the shroud, the
radial wavelength increases with radius and varies over the range of 11 6 λr/δ 6
17.6. The radial phase velocity Vφ = λrσ/(2π) decreases with radius over the range
0.08 6 V ∗φ/Ωr∗ 6 0.12.

Experiments by Gauthier et al. (1999) show the same kind of oscillatory axisym-
metric patterns in a cylindrical cavity, but they appear far from the axis. Typical
angular frequency and wavelength for their experiment are σ = 4 and λr/δ = 25.4 at
Re = 128 for a cavity of large aspect ratio, L = 10.45. The circular vortices propagate
radially with diminishing phase velocity as r → 0. An axisymmetric time-dependent
instability has also been reported by Schouveiler et al. (1999) inside a Batchelor flow
at Re = 222 for L = 8.74: there five pairs of circular rolls (that they named RC)
appear close to the outer cylindrical wall and travel inward. Our results are also
relevant to the numerical solutions of Cousin-Rittemard (1996) for an annular ro-
tor/stator configuration and of Crespo del Arco et al. (1996) in the Ekman layers of
an annular cavity subjected to a forced radial outflow. For Re ' 800, Rm = 5, Crespo
del Arco et al. (1996) obtained rolls moving outward with σ = 7.4 and λr/δ ' 27,
qualitatively similar to our present results close to the rotor. For the same parameter
values Cousin-Rittemard (1996) achieved the same spatial and temporal behaviour
in the two layers with σ = 4.7 and λr/δ ' 27 close to the rotating disc and λr/δ ' 15
close to the stationary disc.

In cylindrical cavities (closer to the axis, r̄ 6 10), the axisymmetric instability
appears for Re = 4000, L = 2 and Re = 1600, L = 5. In contrast to the annular
cavity, the vortices are present on the stator disc only – the Ekman layer on the
rotating disc remains stable (figure 7).

For L = 2 at Re = 4000 a Hopf bifurcation is observed and the angular frequency
σ = 0.9 is very close to the rotation frequency (σ = 1). This solution is characterized
by four to five pairs of circular vortices with a radial wavelength 10 6 λr/δ 6
21 increasing with the radius. These vortices are observed over the external wall
(stationary in this configuration) and travel inward along the Bödewadt layer to
r̄ = 0.5 where they disappear; this final radius corresponds to a local Reynolds
number Reδ = 21. The phase velocity of the circular waves is rather slow, varying
over the range 0.02 6 V ∗φ/Ωr∗ 6 0.08. For the larger aspect ratio L = 5, the solution
is time-dependent with a primary frequency σ ' 4. In this case we did not observe a
transition to time-dependent flow via a Hopf bifurcation as for L = 2. The solution is
characterized by vortices of radial wavelength 8 6 λr/δ 6 25 that vanish at Reδ = 27
(figure 7).

In the near-axis region (corresponding to the cavity L = 2) the present results
are similar to the experimental findings of Savas (1987) for a cavity of aspect ratio
L = 0.5. Savas (1987) was the first to observe travelling circular waves during
impulsive spin-down of a fluid-filled cylinder for 25 6 Ref 6 125 where Refc = 25 is
a critical Reynolds number based on the azimuthal component of the local velocity
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vector in the core, v∗(z = 0) = Ωfr
∗ where Ωf is the angular velocity of the flow

at the core and the subindex c stands for the critical value. Therefore, in order to
compare with our Reynolds number Reδc (based on the local velocity of the disc) we
have to multiply Refc by β−1/2. As β varies with the radius (see § 4) we consider an
average value, β = 0.5, from L = 2 and L = 5 computations in order to compare with
our results. From our definition of local Reynolds number, the value given by Savas
(1987) is Reδc ≈ 35, which is close to the one exhibited in our simulations, Reδc = 21
for L = 2 and Reδc = 27 for L = 5. Savas (1987) observed about nine pairs of rolls
with a radial wavelength increasing with radius in the range of 10.5 6 λr/δ 6 31
and moving inward with an estimated phase velocity from his flow visualization of
about Vφ = 0.135 with a slight attenuation towards the centre to Vφ = 0.093. The
frequency σ = 5 reported by Savas (1987) is close to σ = 4.76 computed farther
from the axis in the annular cavity (Rm = 4, L = 5) but it is however five times
larger than σ ' 1 computed in the near-axis region (in the cylindrical cavity, L = 2).
Schouveiler et al. (1999) also showed axisymmetric structures which travel inward
with an angular frequency decreasing from σ = 3 (in a region close to the external
wall) down to σ = 1 near the axis, in a zone very similar to the computational domain
in the cylindrical cavity (see the sketch in figure 4); this behaviour is attributed to
pairing phenomena (see § 6.1). Our results are also in good agreement with numerical
results obtained with an axisymmetric model. In this near-axis region, numerical
results by Cousin-Rittemard et al. (1998) also displayed a periodic solution, σ = 0.88,
with five pairs of rolls over the stationary disc in a cylindrical cavity of aspect
ratio L = 2. Moreover, the impulsive spin-down problem has been reconsidered both
numerically and experimentally by Lopez & Weidman (1996) at Re = 38528 with
L = 0.5. They report good agreement with Savas’ results; in particular, they find
inward propagating circular waves with a wavelength 9.8 6 λr/δ 6 20 and a phase
velocity Vφ = 0.145. A single pairing of the circular waves documented experimentally
was found to be in excellent agreement with numerical simulation of the flow.

Thus, the present computed values of wave features (λr, σ, Vφ) are in good agreement
with previous experimental and numerical results. Following the analysis of Savas
(1987), we conclude that the instabilities are of type II in both the Bödewadt and the
Ekman layers.

5.1.3. Circulation of the rolls in the annular cavity

The vortices that arise in the stator layer are carried along the stator inward to the
shaft where they are transported up to the rotating disc (figure 6a). We have observed
that the rolls that travel all around the annular cavity do not correspond to a simple
recirculation of disturbance structures. The structures grow in the Bödewadt layer
and decay in the Ekman layer on the rotating disc (table 6). In the annular cavity
(Rm = 4, L = 5), the magnitude of fluctuation is a maximum at the mid-stator location
(r̄ = 18), where the base flow velocity is the largest (Serre 2000). The magnitude of
the axial velocity fluctuation is then close to 2× 10−2 which is about 50 times larger
than the magnitude of the corresponding fluctuations near the rotating disc. In this
process the vortices amplify in the stator layer from the shroud to r̄ = 18 and then
diminish gradually while travelling further towards the shaft (the minimum of the
axial velocity fluctuation gets close to 2 × 10−3). Thus, the amplitude is abruptly
damped on the shaft, at mid-height approximately, where the minimum is 5 × 10−4.
On the rotor the magnitude of the disturbance remains small with w̃ ≈ 4 × 10−4.
Thus, we can consider that there is no feedback mechanism induced by the shaft and
the shroud that enclose the cavity.
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X

Figure 8. Complex spiral and annular patterns of the instability at Re = 400 in the annular cavity
(Rm = 4, L = 5). Three-dimensional plot of the iso-surface of the fluctuation corresponding to the
axial velocity (w̃ = 5× 10−4) in both Ekman and Bödewadt layers.

r̄ = 16 r̄ = 18 r̄ = 20 r̄ = 24.4

|w̃| × 10−3 in z = −0.8 (stator) 2.25 20.02 5.05 3.52
|w̃| × 10−3 in z = 0.8 (rotor) 0.55 0.40 0.35 0.28

Table 6. Values of the axial velocity fluctuation at Re = 400 and at several radial positions r̄ in
the Ekman and the Bödewadt layers in the annular cavity (L = 5, Rm = 4).

5.2. Three-dimensional instabilities

The rolls that progress in the form of rings in the axisymmetric solutions now appear
as spirals travelling within the cavity. One also observes the coexistence of ring and
spiral patterns in the Bödewadt layer in annular and cylindrical geometries (figure 8).
The three-dimensional flow was obtained by using as initial condition an axisymmetric
solution and a three-dimensional perturbation superimposed on it. In experiments
the onset of three-dimensional flows is spontaneous. Many reasons can be suggested,
including: the convective/absolute nature of the instability, the necessity of finite-
amplitude perturbations, and the restrictions imposed by a finite discretization. Many
authors have argued in favour of the convective nature of the transition explaining
this seeming mismatch between the experimental results and the present situation. In
any case additional calculations would be needed at higher rotation rates and with a
greater resolution in the azimuthal direction.
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Figure 9. Spiral patterns of the instability at Re = 330 in the annular cavity (Rm = 5, L = 5).
(a) Three-dimensional presentation of the iso-surface of the fluctuation of the axial velocity
(w̃ = 8 × 10−4) in both Ekman and Bödewadt layers. (b) Iso-lines of the fluctuation of the
axial velocity (w̃ = 4× 10−4) in the plane (r, z, π/4).

The general form of the disturbance is α sin (pθ) where p is an arbitrary number
corresponding to an azimuthal wavelength and α is the amplitude rate. A typical
value of α is 0.05 and we have obtained for each value of α a transition to three-
dimensional flow. The effect of α on the transient has been investigated in the case of
a rotating cavity subjected to a radial outflow (Serre et al. 2001); this reports an α−1/3

dependence of the transient time needed to reach the stabilized state. The disturbance
is superimposed locally near the shroud at about L(Rm + 0.7) 6 r̄ 6 L(Rm + 1). The
same three-dimensional results are obtained irrespective of whether the azimuthal
velocity or the other components of the velocity are perturbed and for three different
disturbances of the azimuthal wavelength: p = 2π/3, 2π/8 and 2π/12. The exact
divergence-free constraint is rapidly satisfied after a few preliminary iterations and a
vortex structure grows or is damped depending on the initial flow conditions.

The orientation of the wave front is measured in terms of the angle ε with
respect to the azimuthal direction of the geostrophic flow and which is defined
positive when inclined towards the axis. The azimuthal wavelength is defined as
λθ = 2πr∗/n. The general wavelength of the spiral patterns can be defined by λ, as
λ = (2πr∗/n)| sin (ε)| = λθ| sin (ε)|, where n is the number of arms over 2π at the
radius r∗.
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X

Figure 10. Three-dimensional instability of the Bödewadt layer at Re = 4000 in the cylindrical
cavity (L = 2). View of the iso-surface corresponding to the fluctuation of the axial velocity
(w̃ = 4× 10−3). Critical local Reynolds number Reδc = 33.

5.2.1. Pure spiral three-dimensional patterns

Pure spiral patterns devoid of circular waves may be found in the (L = 5, Rm = 5)
annular cavity far from the axis (figure 9a) and also in the near-axis region in the
cylindrical cavity (L = 2) (figure 10).

In the annular cavity, the three-dimensional solution is obtained from the axi-
symmetric stationary flow given in § 5.1.1 for Re = 330. After a transient t ' 250
(tν = 330), the solution is oscillatory (σ = 21.4) and a spiral structure with 22 arms
arises in both layers.

Inside the Ekman layer, one can observe in figure 9(b) eight pairs of rolls in the
radial direction, with a radial wavelength 12 6 λr/δ 6 18. The angle of the spiral
wave front ε decreases with r̄ over the range −15.3◦ 6 ε 6 −6.9◦, the corresponding
wavelength decreases with r̄ over the range 9.4 6 λ/δ 6 13.8, and the phase velocity
Vφ = λσ/2π decreases with r̄ over the range 0.12 6 V ∗φ/Ωr∗ 6 0.26. These three-
dimensional spiral patterns have already been observed in experiments on the Ekman
layer; see the review in Faller (1991). Caldwell & Van Atta (1970) and Faller &
Kaylor (1966) found similar structures in experiments (spiral arms with a wavelength
22 6 λ/δ 6 33 and angles −20◦ 6 ε 6 5◦) that they referred to as a type II instability
of the Ekman layer. The spiral structure of the computed rotor layer shows the same
characteristics as the type II standard instability of the Ekman layer.

The spiral vortices on the stationary disc exhibit some similarity with those on
the rotating disc but with positive angles 11◦ 6 ε 6 23◦, which reveals a greater
inclination with respect to the geostrophic flow. The wavelength of the spiral wave
front near the stator is 14.9 6 λ/δ 6 20.4, slightly larger than on the rotating disc.
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The spiral wave fronts propagate inward with a phase velocity which varies with the
radius as 0.25 6 V ∗φ/Ωr∗ 6 0.28.

In the near-axis region r̄ 6 4 (cylindrical cavity, L = 2), similar three-dimensional
spirals develop after a short transient time of about t = 20 after the disturbance
is superposed onto the axisymmetric flow for Re = 4000. The temporal behaviour
exhibits a transition from an oscillatory axisymmetric solution (σ = 0.9) to a quasi-
periodic-type flow with two major frequencies equal to σ = 0.9 and σ = 2.8. Here four
to five pairs of rolls are observed on the stationary disc with a radial wavelength that
remain close to λr/δ ' 25. The rotating disc layer and the near-axis region remain
unperturbed as in the axisymmetric solution, in agreement with the local Reynolds
number criterion for the onset of the Ekman layer instability. The critical Reynolds
number Reδc is roughly 33 on the stationary disc, very close to the experimental
criterion determined by Savas (1987) Reδc ≈ 35 (see § 5.1.2). During the transient,
axisymmetric patterns are observed in the intermediate radial region 1 6 r̄ 6 2 corre-
sponding to 33 6 Reδ 6 63.5 while the axisymmetric rolls immediately transform into
spiral structures farther from the axis. This behaviour is in accord with some cases to
be considered in § 5.2.2. The axisymmetric structures then vanish and only six spiral
arms are observed after stabilization (see figure 10). The angle ε with the geostrophic
flow significantly decreases with r̄, with values ε = 25.7◦ at r̄ = 2 and ε = 7◦ at
r̄ = 4; the corresponding wavelengths vary over the range 16.1 6 λ/δ 6 28.5. These
spiral patterns have already been observed in experiments in a Bödewadt layer by
Schouveiler et al. (1999) at Re = 257.4, L = 8.75: the spiral patterns (denoted RS1)
evolve close to the shroud with an angle of ε = 25◦ but are described as propagating
outward, opposite to that obtained in our direct numerical simulation.

The computed values of λ, and particularly the positive values of ε for these spiral
waves, are in good agreement with previous experimental and numerical results.
Again following the analysis of Savas (1987) the instability of the Bödewadt layer is
supposed to be of type I.

An iso-surface corresponding to the axial velocity fluctuation (w̃ = 5 × 10−4) is
plotted in figure 11 for the cylindrical cavity (L = 2). The pattern exhibits two
major features. Away from the shroud, vortices from the unstable Bödewadt layer
rise up to the vicinity of the rotating disc. This suggests some pumping effect from
the rotor of small magnitude. Near the shroud (which is stationary in this cavity),
spiral arms appear and extend to about 80% of the height of the cavity. This
vertical protrusion shows a typical helicoidal trajectory (see a recent note by Buisine,
Oble & Andrianarahinjaka 2000). The overall impression from this plot is that the
three-dimensional flow pattern is very complex.

5.2.2. Mixed annular and spiral patterns

The cylindrical cavity of larger aspect ratio (L = 5) and the annular configuration
(Rm = 4, L = 5) are now considered to explore the effects of reducing the radial
confinement and increasing the mean curvature, respectively. The spatial structure
is more complex than that described above in § 5.2.1. We observe the coexistence
of circular and spiral patterns inside the Bödewadt layer as well as dislocation
phenomena in both layers.

In the annular cavity (r̄ ∈ [15; 25]), the three-dimensional solution is aperiodic
but with two dominant frequencies, σ1 = 16.2 and σ2 = 8, while the unperturbed
axisymmetric oscillatory solution was periodic (σ = 4.7). These frequencies are suc-
cessively dominant at various locations. The smaller frequency σ2 is dominant near
the stationary disc boundary layer while σ1 is dominant close to the rotating disc.
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Figure 11. Complex three-dimensional instability at Re = 4000 in the cylindrical cavity (L = 2).
View of the fluctuations of the axial velocity (w̃ = 5 × 10−4) expanding from the Bödewadt layer
(below) up to the rotating top wall.

The σ1 disturbance also dominates at the rotor–shroud corner while both σ1 and σ2

disturbances are of similar magnitude at the rotor–shaft and stator–shroud corners.
The instability spatial structure inside the Ekman layer is shown in figure 12(b).

There are seven pairs of rolls in the radial direction (figure 12a) and 18 spiral arms
can be counted over 2π. The magnitude of ε decreases dramatically between the
inner and the outer radii, ranging from −20◦ to −7.5◦, and the associated wavelength
increases over the range 11.4 6 λ/δ 6 17.9. The vortices evolve outward, with a
phase velocity Vφ as 0.12 6 V ∗φ/Ωr∗ 6 0.30. In figure 12(b), coalescence of spiral
vortices between the shaft at R0 and the shroud at R1 produces a zone of dislocations
which reduces the number of spiral arms (further details about this phenomenon are
given in § 6.1). These spiral patterns have characteristic parameters (λ, ε) very close to
those described previously in § 5.2.1 for L = 5, Rm = 5 and correspond to a type II
instability.

In the Bödewadt layer, circular and spiral instabilities coexist (figure 12c). Four
pairs of spiral and circular rolls of average radial wavelength λr = 19.2 and two pairs
close to the shroud with a larger wavelength λr = 26 may be observed. The latter
develop into rings and the former develop into 18 spiral arms with angles varying
over the range 15.6◦ 6 ε 6 23◦ close to the shaft in the region 15 6 r̄ 6 18. The
persisting axisymmetric structures interact with the spiral arms at r̄ = 18 and travel
inward with a radial phase velocity 0.19 6 V ∗φ/Ωr∗ 6 0.27.

The coexistence of these two types of waves was first described by Savas (1987). He
reported patterns that simultaneously involve spiral waves with 23 arms of positive



Annular and spiral patterns in flows between rotating and stationary discs 91

X
Rotor

Dislocation

StatorR0 R1

(a)

(b) X

Rotor

R1R0

X(c)

Figure 12. Pairing effects on the three-dimensional instability at Re = 400 in the annular cavity
(Rm = 4, L = 5). (a) Iso-lines of the fluctuation of the axial velocity (w̃ = 3× 10−3) in the plane (r,
z, π/4). (b) Iso-surface of the fluctuation of the axial velocity (w̃ = 3 × 10−3) close to the rotating
disc in the plane (r, 0.95, θ) for 0 6 θ 6 π and dislocation phenomenon. (c) Spiral and annular
patterns of the Bödewadt layer: iso-surfaces of the fluctuation of the axial velocity (w̃ = 3× 10−3)
close to the stationary disc in the plane (r,−0.95, θ) for 0 6 θ 6 2π.

angle, ranging between 12◦ and 18◦, towards the centre and circular waves. Savas
(1987) identified these spirals as being a type I instability. The axisymmetric structures
were exhibited close to the outer cylindrical wall as in our numerical solution.

In the cylindrical cavity (r̄ 6 10, L = 5), the flow becomes unstable and vortices
appear in the Bödewadt layer soon after a disturbance is superimposed on the steady
axisymmetric solution obtained for Re = 1400. The temporal behaviour exhibits a
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Figure 13. Spiral and annular patterns of the instability of the Bödewadt layer for Re = 1200
in the cylindrical cavity (L = 5). Three-dimensional view of the iso-surface corresponding to the
fluctuation of the axial velocity (w̃ = 4× 10−3).

oscillatory regime with a dominant angular frequency nearly equal to the rotation
frequency σ ≈ 1 and very close to that computed for Re = 4000 and L = 2. Eight pairs
of rolls of radial wavelength decreasing with radius over the range 8.8 6 λr/δ 6 17
move downstream to r̄ = 1.54, corresponding to Reδ = 26.64 with phase velocity
0.02 6 V ∗φ/Ωr∗ 6 0.27. For 1.54 6 r̄ 6 5 for which 26.64 6 Reδ 6 86.5, five circular
waves evolve. At larger distance from the axis, spiral structures evolve with angles
varying between 7◦ 6 ε 6 28◦ (figure 13); the spiral arms exhibit dislocations that
can be seen in figure 12(b). In contrast to the previous annular case (Rm = 4, L = 5)
and experiments by Savas (1987), the spirals appear close to the outer wall at larger
local Reynolds number Reδ as in recent experiments by Schouveiler et al. (1999) and
Gauthier et al. (1999) for Re = 273 and L = 8.75 and for Re = 180 and L = 20.9,
respectively. Schouveiler et al. (1999) found about 16 spiral arms close to the shroud
as in the cylindrical cavity for Re = 1600 and L = 5 and defined by an angle ε
of about 25◦. Thus it seems that these spiral structures correspond to the type I
instability of the Bödewadt layer. Nevertheless, we cannot determine from the present
results if the coexistence of these two types of structures is a consequence of the
confinement effect or if it is provoked by different values of the local parameters.

6. Analysis and discussion
6.1. Structural defects

In extended systems (when the scale of the system is several times larger than the
scale of the physical phenomenon), the constraint due to the geometry is weak: then,
dislocations may appear and several patterns can be observed simultaneously.
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The structural defects observed in our computations are related to variations in
the wavelength of the structures. Indeed, it appears that various patterns (rings,
spirals) are present in different flow regions so that structural defects are created
at the junction between them. The coexistence of these different patterns and the
dislocations at the junction are clearly evident in both layers of the annular cavity
(L = 5, Rm = 4) in figures 12(b) and 12(c) at Re = 400 and close to the stationary
disc in the cylindrical cavity (L = 5) at Re = 1200 (figure 13): dislocation phenomena
arise either at the junction between circular and spiral waves (figures 12c and 13
in the Bödewadt layer) or between spiral arms of different azimuthal wavelengths
(figures 13 and 12b in the Ekman layer). In all cases these structural defects are
stationary. For example, in the Ekman layer of the annular cavity for Rm = 4, we
observed six periodic dislocations over 2π at the fixed radial location r̄ = 23.75. In
the azimuthal direction the phenomenon thus repeats every π/3 radians and consists
of the coalescence of two successive spiral structures into one with a simultaneous
disappearance of the third neighbouring vortex.

Structural defects have been reported for circular waves by Cousin-Rittemard (1996)
at 700 6 Re 6 1000, L = 5 and for a moderate distance from the axis, Rm ' 2, and
later in experiments by Schouveiler et al. (1999) in the Bödewadt layer at Re = 225
in a cavity of aspect ratio L = 8.74. These authors have found axisymmetric waves
travelling in the radial direction which have different wavelengths and different time
frequencies in the two zones (small and large radii); at the junction the rolls undergo
pairing. These authors reported that the pairing phenomenon of cylindrical waves
is correlated to the local adjustment of phase velocity to the base-flow convective
velocity. Indeed, since the radial wavelength (related to the thickness of boundary
layer) does not vary very much over the radial domain, the frequency must vary: the
phenomenon of dislocation is thus associated with a change in frequency. Structural
defects at the junction between circular and spiral waves have been observed in
experiments by Savas (1987) and more recently by Schouveiler (1998) and Gauthier
et al. (1999). However to our knowledge the dislocation phenomenon when only spiral
patterns are present has not been reported in experiments.

In our results, the spatial dislocation is not associated with a frequency change
and the time behaviour is oscillatory with the same frequency in the whole boundary
layer. However, the dislocations are related to the variation of the angle in the radial
direction with respect to the azimuthal direction, the preferred angle that undergoes
a discontinuous change while the phase velocity changes during dislocation. As
mentioned above, this is a similar mechanism to the case of the circular patterns
shown by Cousin-Rittemard (1996) and Schouveiler et al. (1999) but we did not
observe vortex pairing of circular waves.

We should also mention the numerical studies of Lopez (1996) and Lopez & Weid-
man (1996) for circular waves. There, it is possible that the dislocation phenomenon
would be a transient, but as we did not pursue the computation over several viscous
times, we cannot assess whether our solution is completely established: the system
would be able to evolve towards a solution similar to that in the annular cavity at
Rm = 5 (figure 9).

6.2. Thresholds of the succeeding regimes and hysteresis cycle

We now describe a hysteresis cycle found in our numerical calculations in annular
cavities on decreasing the rotation rate below the value where a spiral instability exists.
The threshold was determined by superposing a three-dimensional perturbation of
the axisymmetric solution while progressively decreasing Re from the spiral solution.
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The three-dimensional spiral instability solution remained stable below the threshold
of the Hopf bifurcation from the axisymmetric solution.

In the annular cavity (Rm = 4, L = 5) the critical value of Re below which
the three-dimensional spiral instability disappears is Rec = 288, while the Hopf
bifurcation occurs at Re = 400. We note also that in the annular cavity for Rm = 5,
the three-dimensional instability is again maintained down to Re = 200 while the
steady instability of the axisymmetric solution occurs at Rec = 330 followed by the
oscillatory instability at Rec = 350. We note for the two cases at different curvatures
that the flow features vary differently: for Rm = 4 the spiral pattern is conserved with
18 arms on varying the rotation rate, while for Rm = 5 it evolves from 22 to 18. As
a result, the frequency varies from 21.4 to 16.3 which is quite similar to the basic
frequency level of about 16.8 observed at Rm = 4.

This hysteresis cycle could suggest a subcritical nature of the transition and com-
plementary computations on the phenomenon are in progress.

6.3. Some effects of curvature and confinement on flow behaviour

The study of cavities with different values of Rm permits an investigation of phenom-
ena associated with curvature effects. The circular and the spiral structures both exist
at small and large distances from the axis (large and small curvature, respectively),
but more complex spatial and temporal behaviours of the flow are observed as the
curvature increases, as revealed for example by the dislocation phenomenon in both
wall layers (see § 6.1).

Indeed, when the curvature effects are important (L = 5, Rm = 1) and (L = 5,
Rm = 4), the three-dimensional spatial structure of the instability near the stationary
disc exhibits the coexistence of circular and spiral patterns as observed by Savas
(1987) and by Schouveiler et al. (1999), while only spiral arms are observed at larger
distances from the axis (L = 5, Rm = 5) in both the Ekman and the Bödewadt layers.

The effect of the curvature on the temporal behaviour results in an increase of the
nonlinearity of the problem (for Rm → 1) and so the dynamical behaviour evolves
rapidly to more complex regimes. Thus at large distances from the axis, the sequence
of solutions corresponding to successive bifurcations can be easily observed. For
instance in the annular cavity for Rm = 5, there is an exchange of stability from
one steady flow without rings to another steady regime with rings, and when an
azimuthal disturbance is superimposed onto the axisymmetric solution, it develops
into an oscillatory spiral solution. Slightly nearer the axis, in the Rm = 4 cavity, the
first transition observed is from a steady to an oscillatory solution and the three-
dimensional disturbance produces a non-periodic regime. Further details about this
aspect will be given in Daube et al. (2001). These authors investigated the linear
and nonlinear stability of axisymmetric rotor–stator disc flows and they found in
particular that for large radii the Hopf bifurcation is supercritical whereas at small
radii this bifurcation seems to become subcritical.

The effect of confinement is to slow down the evolution to complex regimes, unlike
the effect of curvature. For example in the near-axis region and the confined cavity
(Rm = 1) of aspect ratio L = 2, a spatial structure with only spiral arms was observed
and a Hopf bifurcation was obtained as in Cousin-Rittemard (1996).

6.4. An equation for the spiral wave fronts

We represent the rotating waves obtained in both Ekman and Bödewadt layers by a
wave front equation based on a kinematic observation as

r̄ = f(θ).
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In a previous work, we have proposed an equation for the spiral wave front in the
case of an Ekman layer arising in a rotating cavity subjected to a radial forced flow.
It was observed that this wave front was not linear and followed a law r2 ∝ θ (for
more details see Serre et al. 2001). More precisely, the location of the spiral wave
front was given by

r̄2 =
nLRm

3π

(
θ +

2πi

n

)
,

and thus the angle made by the spiral arms with the geostrophic velocity varied as
r̄−2 according to

tanψ = −nLRm
6πr̄2

,

where n is the number of spiral arms over 2π. This equation still fits very well with
our computations of the spiral arms arising close to the rotating disc in the annular
cavities (figures 8, 9, 12b) which correspond to geometrical parameters (Rm, L) close
to those of our previous study (Serre et al. 2001).

For the spiral wave fronts arising in the Bödewadt layer we have not determined
a special equation (as in the case of the Ekman layer) but only a trend. For this
purpose, we have measured the locations of several discrete points on the spiral
arms. We have plotted (figure 14), in the (r̄, θ)-plane, the cylindrical coordinates
of two consecutive arms of the computed spirals together with the data from the
experiments by Schouveiler et al. (1999). Unlike the Ekman layer instability, the radius
is seen to depend nearly linearly on the polar angle θ which is characteristic of an
Archimedean spiral:

r̄ = f(Re, Rm, L)θ.

The variation of the orientation angle with the radius is in this case tan ε ∝ 1/r̄,
which shows that the curvature effect is expected to be important. Note that the
inclination angle is positive, so the plotted patterns would correspond to type I
instability.

7. Conclusion
The incompressible fluid flow in a rotor–stator configuration has been numerically

investigated for cylindrical cavities (Rm = 1) with two aspect ratios L = 2 and L = 5
and for annular cavities of aspect ratio L = 5 with two values of the curvature
parameter Rm = 4 and Rm = 5. The choice of the geometrical parameters and
the efficiency of the three-dimensional pseudospectral method permitted the accurate
investigation of the transition in both the Ekman and Bödewadt layers. For sufficiently
high values of Re the base flow of Batchelor type becomes unstable to circular and
spiral waves, as was found in the experimental work of Schouveiler et al. (1996,
1999). For the Bödewadt layer instability, computed values of the characteristic wave
features (wavelength, spiral inclination angle, frequency and phase velocity) compare
favourably with available measurements (Sirivat 1991; Savas 1987; Schouveiler 1999;
Gauthier et al. 1999) and with axisymmetric numerical simulations (Cousin-Rittemard
1996; Lopez & Weidman 1996). In figure 15 the values of Re at which instability is
observed in various numerical simulations and experiments are plotted as a function
of R1/2h. The combined numerical and experimental data show that all the instability
configurations lie above the curve Re(R1/2h)

1.8 = 104. The patterns arising close to
the rotating disc in the annular cavities also have characteristic parameters in good
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Figure 14. Display of two consecutive spiral arms of the Bödewadt layer in the plane (r̄, θ) for
different numerical and experimental cases. This view indicates a linear decrease of radius with the
polar angle θ, characteristic of Archimedean spirals.
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agreement with the experimental measurements of the Ekman layer instability (Faller
1963; Caldwell & Van Atta 1970) and with our numerical study of the transition of
the Ekman layer in a rotating cavity subjected to a radial forced flow (Serre et al.
2001).

The analysis and comparison with the literature on unstable flows indicate that
the patterns observed in both boundary layers can be related to type I and type II
instabilities. Two axisymmetric modes of standard type II have been observed in the
form of circular structures. A stationary instability of the Bödewadt layer has been
identified numerically, for the first time, far from the axis at Re = 330, Rm = 5. For
higher rotation rates, an oscillatory mode appears in both boundary layers relatively
close to the central axis for Re = 400, Rm = 4 and in the Bödewadt layer only in the
near-axis region for Re = 2000, L = 2 and for Re = 1600, L = 5. This axisymmetric
instability is robust and coexists with the three-dimensional spiral instability when
the mean curvature is large, i.e. at small radii in the cylindrical cavity, when the
radial confinement is sufficiently weak (L = 5). On the other hand, the axisymmetric
instability is unstable to azimuthal disturbances when the curvature is small, i.e. at
large radii in the annular cavity (Rm = 5). The evolved spiral structures are indicative
of type I and type II instabilities and the number of spiral arms depends on the
flow conditions. The three-dimensional spiral instability selected is unique, stable
and independent of the magnitude and wavelength of the azimuthal disturbance.
Structural defects in these three-dimensional patterns are also observed under certain
conditions; these phenomena correspond to a variation of the wavelength involving
a periodic structure of dislocations at a fixed radius around the circumference of the
cavity. To our knowledge, this is the first time that dislocation phenomena have been
reported when only spiral patterns are present.

Features of the axisymmetric and three-dimensional instabilities are found to be
substantially different for small curvature at large radii, in the annular cavities
(Rm = 4 and Rm = 5). We observed profound spatial and temporal variations as
the axisymmetric circular waves underwent transition to spiral waves. Compared to
the axisymmetric patterns, the three-dimensional ones do not exhibit the same strong
disparity of roll size between the rotating and the stationary discs. The large difference
in wavelengths between the rotating and the stationary disc layer disappear during the
transient period and the wavelengths obtained in the final solution are comparable.
Moreover, the magnitude of the fluctuation is nearly constant between the top and
bottom layers. In contrast to the annular case, the instability wave characteristics
(σ, ε, λ) for the cylindrical cavity do not change appreciably; the three-dimensional
flow retains properties close to the axisymmetric ones.

Our consideration of two cavities with different values of Rm and L permitted an
exploration of phenomena affected by curvature and radial confinement. In particular,
the instability regimes and the threshold values for the onset of instability are
dependent on the local curvature. Moreover, the geometrical confinement is shown to
have a strong effect on the dynamical behaviour in the cylindrical cavity: a pure Hopf
bifurcation was observed for the smaller aspect ratio L = 2 while a transition from
steady to non-periodic flow was found at L = 5. Confinement by the internal wall
(shaft) was shown to have a profound effect on the amplification of the instabilities.
For the annular cavity, the disturbance produced by the supercritical instability of the
stator layer is transmitted along the shaft to the rotor and brings about a subcritical
instability in the Ekman layer. For the cylindrical cavity, on the other hand, the
unstable stator flow attenuates in the vicinity of the axis such that no subcritical
Ekman instability of the Ekman layer on the rotor is observed. A study is in progress
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on these aspects and into the convective/absolute transition in the Ekman layer
(Lingwood 1996) in both the rotor–stator cavity and the open rotating cavity with
throughflow.

Here, the effect of the curvature radius has been studied, in a relatively narrow
range near the axis. However, important perspectives for future numerical work may
be derived from the regime diagram of Schouveiler et al. (1996) and Schouveiler
(1998). In particular, it would be interesting to study the flows at large distance from
the axis the basic state for which involves a viscous flow with merged boundary layers.
This regime evolves to non-periodic solutions as solitary waves and spots during the
transition to turbulence. The numerical solitary vortex solution found by Hoffmann
& Busse (2000) reinforces the expectancy of obtaining these unlocalized regimes.
However the range of parameters for which the solitary vortex is stable has been
determined neither experimentally nor theoretically. Thus, the numerical investigation
seems to be feasible using cavities of large aspect ratio and at high values of the
rotation rate. However, that study would be expensive in terms of CPU time.

The capability of the present numerical Navier–Stokes solver to represent complex
three-dimensional flow structures in the whole cavity is very satisfying. All these
results give us confidence that our direct numerical approach may be extended to
simulate unsteady turbulent flows in the future.

The computations were carried out on a CRAY C98 and on a NEC SX5 from
IDRIS/CNRS (Orsay). The authors acknowledge Professors P. D. Weidman, B. E.
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useful suggestions. The authors are grateful to Professors R. Peyret (University of
Nice), P. Le Quéré (LIMSI Paris) and J. P. Pulicani (University of Marseille) for fruitful
discussions. The research was supported by the DGA (Dr Ormancey), Réseau MFN
(CNRS-SPI) and the PICASSO Exchange Program. The authors also acknowledge
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